双向搜索
本页面将简要介绍两种双向搜索算法:「双向同时搜索」和「Meet in the middle」。
双向同时搜索
定义
双向同时搜索的基本思路是从状态图上的起点和终点同时开始进行 广搜 或 深搜。
如果发现搜索的两端相遇了,那么可以认为是获得了可行解。
过程
双向广搜的步骤:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | 将开始结点和目标结点加入队列 q
标记开始结点为 1
标记目标结点为 2
while (队列 q 不为空)
{
从 q.front() 扩展出新的 s 个结点
如果 新扩展出的结点已经被其他数字标记过
那么 表示搜索的两端碰撞
那么 循环结束
如果 新的 s 个结点是从开始结点扩展来的
那么 将这个 s 个结点标记为 1 并且入队 q
如果 新的 s 个结点是从目标结点扩展来的
那么 将这个 s 个结点标记为 2 并且入队 q
}
|
Meet in the middle
Warning
本节要介绍的不是 二分搜索(二分搜索的另外一个译名为「折半搜索」)。
引入
Meet in the middle 算法没有正式译名,常见的翻译为「折半搜索」、「双向搜索」或「中途相遇」。
它适用于输入数据较小,但还没小到能直接使用暴力搜索的情况。
过程
Meet in the middle 算法的主要思想是将整个搜索过程分成两半,分别搜索,最后将两半的结果合并。
性质
暴力搜索的复杂度往往是指数级的,而改用 meet in the middle 算法后复杂度的指数可以减半,即让复杂度从 降到 。
例题
例题 「USACO09NOV」灯 Lights
有 盏灯,每盏灯与若干盏灯相连,每盏灯上都有一个开关,如果按下一盏灯上的开关,这盏灯以及与之相连的所有灯的开关状态都会改变。一开始所有灯都是关着的,你需要将所有灯打开,求最小的按开关次数。
。
解题思路
如果这道题暴力 DFS 找开关灯的状态,时间复杂度就是 , 显然超时。不过,如果我们用 meet in middle 的话,时间复杂度可以优化至 。meet in middle 就是让我们先找一半的状态,也就是找出只使用编号为 到 的开关能够到达的状态,再找出只使用另一半开关能到达的状态。如果前半段和后半段开启的灯互补,将这两段合并起来就得到了一种将所有灯打开的方案。具体实现时,可以把前半段的状态以及达到每种状态的最少按开关次数存储在 map 里面,搜索后半段时,每搜出一种方案,就把它与互补的第一段方案合并来更新答案。
参考代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | #include <algorithm>
#include <iostream>
#include <map>
using namespace std;
int n, m, ans = 0x7fffffff;
map<long long, int> f;
long long a[40];
int main() {
cin >> n >> m;
a[0] = 1;
for (int i = 1; i < n; ++i) a[i] = a[i - 1] * 2; // 进行预处理
for (int i = 1; i <= m; ++i) { // 对输入的边的情况进行处理
int u, v;
cin >> u >> v;
--u;
--v;
a[u] |= ((long long)1 << v);
a[v] |= ((long long)1 << u);
}
for (int i = 0; i < (1 << (n / 2)); ++i) { // 对前一半进行搜索
long long t = 0;
int cnt = 0;
for (int j = 0; j < n / 2; ++j) {
if ((i >> j) & 1) {
t ^= a[j];
++cnt;
}
}
if (!f.count(t))
f[t] = cnt;
else
f[t] = min(f[t], cnt);
}
for (int i = 0; i < (1 << (n - n / 2)); ++i) { // 对后一半进行搜索
long long t = 0;
int cnt = 0;
for (int j = 0; j < (n - n / 2); ++j) {
if ((i >> j) & 1) {
t ^= a[n / 2 + j];
++cnt;
}
}
if (f.count((((long long)1 << n) - 1) ^ t))
ans = min(ans, cnt + f[(((long long)1 << n) - 1) ^ t]);
}
cout << ans;
return 0;
}
|
外部链接
本页面最近更新:2023/2/18 07:57:07,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面贡献者:NachtgeistW, Alisahhh, AndrewWayne, ChungZH, dkz051, Enter-tainer, FFjet, frank-xjh, Henry-ZHR, hsfzLZH1, iamtwz, Ir1d, kenlig, ksyx, leoleoasd, ouuan, StudyingFather, sundyloveme, Xarfa
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用